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Abstract

In this paper, we present a second-order numerical method for simulations of

reacting flow around heat-conducting immersed solid objects. The method

is coupled with a block-structured adaptive mesh refinement (SAMR) frame-

work and a low-Mach number operator-split projection algorithm. A “buffer

zone” methodology is introduced to impose the solid-fluid boundary condi-

tions such that the solver uses symmetric derivatives and interpolation sten-

cils throughout the interior of the numerical domain; irrespective of whether

it describes fluid or solid cells. Solid cells are tracked using a binary marker

function. The no-slip velocity boundary condition at the immersed wall is

imposed using the staggered mesh. Near the immersed solid boundary, single-

sided buffer zones (inside the solid) are created to resolve the species discon-

tinuities, and dual buffer zones (inside and outside the solid) are created to

capture the temperature gradient discontinuities. The development discussed
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in this paper is limited to a two-dimensional Cartesian grid-conforming solid.

We validate the code using benchmark simulations documented in the lit-

erature. We also demonstrate the overall second-order convergence of our

numerical method. To demonstrate its capability, a reacting flow simulation

of a methane/air premixed flame stabilized on a channel-confined bluff-body

using a detailed chemical kinetics model is discussed.

Keywords: reacting flow, conjugate heat exchange, Cartesian solid,

immersed boundary, adaptive mesh refinement, operator-split projection

1. Introduction

Combustors typically use flame-holders to provide the necessary mecha-

nism for flame stabilization and continuous burning. There is often significant

flame-wall interactions due to the conjugate heat exchange between the hot

products and the nearby cooler flame-holder. In these systems, the length

scales vary from the meter-scale combustor geometric details to the thin sub-

millimeter-scale flame-fronts. The time scales span the slow conjugate heat

exchange processes and the rapid diffusion and reaction phenomena. Our

objective is to capture these wide spectra of spatial and temporal scales us-

ing an operator-split projection algorithm coupled with a block-structured

adaptive mesh refinement (SAMR) framework and an immersed boundary

formalism. When coupled with accurate flame-wall interaction treatment,

fully resolved simulations can provide an insight into complex fundamental

processes like flame stabilization, extinction and blow-off. Such simulations

can also play a vital role in complementing experimental investigations of the

detailed flame structure near the combustor walls; which is challenging due
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to the harsh environment, limited optical access and often inadequate field

data.

Direct Numerical Simulations (DNS) involve solving the governing re-

acting flow equations on a computational grid that resolves all the relevant

scales. Most DNS codes use fully explicit methods on a uniformly spaced or a

stretched regular grid allowing simpler numerical implementation [1, 2]. This

enables the use of high-order finite difference schemes to minimize numerical

diffusion: fourth-order temporally accurate and eighth-order spatially ac-

curate simulations were performed in [1, 2]. The stable time-step used in

such codes is typically close to few nanoseconds for hydrocarbon combustion

(4×10−9s in [2]), primarily restricted by the stiffness of the chemical kinetics.

A compressible flow construction, used in [2], imposes additional restriction

on the stable time-step based on the sonic CFL condition. This extremely

small time-stepping was significantly increased by constructing a low-Mach

semi-implicit projection method, performing the transport and reactive time-

advancement via specialized integrators [3, 4].

We investigated laminar flame stabilization, blow-off and resonant dy-

namics of premixed methane/air flames stabilized on heat-conducting perfo-

rated plate burners [5, 6] using the operator-split projection method described

in [7] on a uniform structured grid. For such problems, where thin reaction

fronts exist only in a small fraction of the computational domain, one may

employ SAMR for higher efficiency. SAMR was first suggested by Berger and

Oliger [8] and implemented for simulation of shock waves in [9]. Thereafter,

it has been used in the simulation of flames with complex chemistry in a

variety of laboratory configurations [10, 11]. Safta et al. [12] developed a
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spatially fourth-order and temporally second-order operator-split projection

scheme for chemically reacting flows at the low-Mach number limit using the

SAMR framework, which forms the basis of the current work.

The SAMR framework development for chemically reacting flows has hith-

erto been limited to fluid-only domains. Artificial flame anchoring conditions

are often employed in the existing numerical simulations: a high temperature

hot-spot in [2], isothermal flame-holder in [13] and hot combustion products

co-flowing with the inflow reactants in [10]. As a result, DNS investiga-

tions are limited to the flow-field far away from the anchoring region. These

artificial anchoring conditions are however advantageous because the slow

time-scale of the conjugate heat exchange between the flame and burner wall

is decoupled from the rapid combustion and flow time-scales. Gruber et al.

[2] showed that incorporating heat exchange between isothermal (simplified

model) channel walls and the interior reacting flow in a combustor was critical

for accurate prediction of the high convective heat fluxes associated with the

rapid radical quenching; however flame-wall interactions near the anchoring

region were ignored. Accurate and efficient simulation tools to capture flame-

wall interactions, allowing the flame to find a stable location naturally, are

still unexplored and essential for understanding the localized phenomenon of

flame stabilization. We addressed this issue in the context of low Reynolds

number flow based perforated-plate burners in [5]. In that, we elucidated

the flame stabilization mechanism highlighting the coupled role of curvature

and local heat exchange with the burner. We also demonstrated that the

conjugate heat exchange govern the unsteady response of premixed flames

during flow perturbations in [6], which can be dangerous for an acoustically
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coupled combustor. Our objective here is to develop a coupled immersed

boundary-SAMR approach allowing the flame to naturally stabilize near the

flame-holder and accurately capture the flame-wall interactions.

Originally developed by Peskin [14] to simulate blood flow in the heart,

the Immersed Boundary Method(IBM) has now found widespread use in a

variety of engineering applications, although primarily limited to non react-

ing flows. The primary advantage of the IBM is that the non-grid conforming

complex immersed bodies can be tackled on a regular Cartesian grid. Mittal

and Iaccarino [15] presented a comprehensive review of the IBM. The pres-

ence of the solid body becomes known to the fluid through a forcing function,

which is consistently constructed using the transport equations and the solid

body constraint. Based on the method of forcing used, IBM can be catego-

rized into a continuous forcing approach (forcing imposed in the governing

equations before discretization) or a discrete forcing approach (forcing im-

posed in the governing equations after discretization [16]). In the buffer zone

method, that will be presented in this paper, the solution is first obtained in

the combined solid-fluid domain, and then corrected inside the solid to the

desired value by imposing the boundary conditions. Similar approaches have

been widely used in the literature for a variety of physical problems. Kreiss

et al. [17] developed a Cartesian embedded boundary method for the sec-

ond order wave equation. An explicit adaptive embedded boundary method

was developed for an unsteady inviscid compressible flows in [18]. It was

extended to solve a variable coefficient Poisson equation and coupled to an

AMR framework in [19]. Fedkiw et al. [20] used a ghost fluid method to pre-

serve continuity of pressure and velocity profiles at discontinuous interfaces
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(tracked by a level set approach) in two-phase incompressible flows. Deiter-

ding [21] used this approach, coupled to an AMR framework, to investigate

gaseous detonations.

Breugem and Boersma [22] presented a method for non-reacting cold flow

simulation in a porous media using Cartesian mesh-aligned solid cubes in a

three-dimensional fluid domain. An IBM variant has been proposed for con-

jugate heat transfer problems with moving and stationary particles, as well

as constant and variable temperature particles; using RANS models in [23]

and using LES/DNS models in [24]. For low-Mach number flows, Paravento

et al. [25] proposed an IBM to include heat exchange between a Cartesian

grid-aligned rectangular object and the non-reacting single-species fluid sur-

rounding it. However, this method was not generalized for flows with varying

(temperature and composition dependent in reacting flows) thermal conduc-

tivity. These challenges are further compounded by the presence of chemical

reactions and multi-species transport equations. Henshaw and Chand [26]

described an approach to incorporate conjugate-heat exchange using compos-

ite overlapping grids. The solid and the fluid domains are solved separately

and the solutions were coupled at the boundary. IBM for reacting flows

with fully coupled momentum-species-energy transport and conjugate heat

exchange with complex immersed walls are not yet developed to the best of

our knowledge.

In an effort toward bridging this gap, in this paper we present a second-

order “buffer zone” IBM to incorporate flame-wall interactions and couple

it with the numerical development presented in [12]. We limit the current

discussion to a Cartesian-grid conforming immersed solid. Using this new
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method, we simultaneously tackle (a) Cartesian mesh-aligned immersed wall

undergoing conjugate heat exchange with the surrounding reacting flow, (b)

multiscale processes using the operator-split projection scheme, (c) detailed

chemical kinetics for multi-species transport, and (d) dynamic tracking of

the flame with SAMR. We describe the numerical method in Section 2. Grid

convergence studies, validation and a reacting flow simulation are presented

in Section 3 and the paper is summarized in Section 4.

2. Governing equations and numerical methodology

The operator-split projection method using the SAMR framework, de-

veloped for chemically reacting flows in [12] for fluid-only domains, forms

the basis of our current work. In this section we briefly summarize it and

then couple it with the new buffer zone method to accurately incorporate

flame-wall interactions.

2.1. SAMR framework

SAMR is used to adaptively refine the computational grid in regions where

the internal flame structure needs to be resolved accurately. Figure 1 shows

a schematic illustration of the SAMR grid topology. A relatively coarse

Cartesian mesh is laid over the entire domain and the field variables are

initialized on it. The grid cells are collated into rectangular patches and

finer grids, known as children patches (obtained by splitting each cell in half

in each dimension) are recursively formed in regions of sharp gradients (based

on temperature or the species of choice). A layer of ghost cells are added to

each patch at all levels to allow the use of symmetric stencils for derivatives

and interpolations. The adaptive nature of SAMR arises from the periodic
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process of identifying cells requiring refinement (followed by the addition

of finer patches) and the simultaneous coarsening of regions which no longer

require refinement. In the current implementation, the momentum equations

are discretized and solved on a uniform mesh only, and are coupled to the

solution of the species and energy conservation equations on the adaptive

mesh hierarchy. For a typical premixed flame, scalar gradients are much

sharper than velocity gradients. The characteristic thickness of the reaction

zone of the flame (typical of the scalar length-scales) is approximately 5∼10

times smaller than the characteristic thickness of the convection-diffusion

zone (typical of the velocity length-scales) for a conventional hydrocarbon

flame1. Moreover, the integration of the momentum equations is typically a

small fraction (∼ 10%) of the total iteration time [12]. Thus it is efficient

to choose a uniform base grid capable of fully resolving the velocity field

and using the SAMR hierarchy only for the scalars. This is additionally

advantageous because one avoids the complex pressure Poisson solver on the

SAMR grid in the projection step, which is currently much slower than its

uniform grid counterpart.

A binary marker function (value 1 in the solid and value 0 in the fluid)

is used as indicator for the solid cells at all the levels of refinement. The

entire domain is treated as a single-material (fluid-only) domain with phys-

ical properties (heat conductivity, specific heat and density) appropriately

changed in the solid region using the marker function. Layers of fictitious

1 δR
δT
≈ n

Z for a premixed flame where δR is the reaction-diffusion zone thickness, δT is
the convection-diffusion zone thickness, n is the overall reaction order (≈ 1-3 for methane-
air combustion) and Z is the Zeldovich number (≈ 11 for methane-air combustion)
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cells, called a buffer zone in the paper, are created within the numerical

domain near the solid-fluid boundary and their values are filled such that

the boundary conditions get imposed automatically when the derivative and

interpolation routines are implemented. This allows the usage of symmetric

stencils throughout the interior of the domain. The marker function approach

allows for disjoint multiple solid objects in the computational domain; useful

for practical applications such as flow simulation around an array of heat-

conducting flame-holders in a combustor.

2.2. Governing equations

At the low-Mach number limit, the continuity, momentum and scalar

equations are written in compact form as

∇ · v = −1

ρ

Dρ

Dt
(1a)

∂v

∂t
= −1

ρ
∇p+ CU +DU (1b)

∂T

∂t
= CT +DT + ST (1c)

∂Yk
∂t

= CYk
+DYk

+ SYk
k = 1, 2, . . . , Ns (1d)

where v is the velocity vector, ρ the density, T the temperature, Yk the mass-

fraction of species k, p is the hydrodynamic pressure, and Ns is the number

of chemical species. The D
Dt

operator represents the material derivative, D
Dt

=

∂
∂t

+ v · ∇. The system of governing equations is closed with the equation of

state for an ideal gas

P0 =
ρ<T
W

= ρ<T
Ns∑
k=1

Yk
Wk

= const (2)
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where P0 is the thermodynamic pressure, < is the universal gas constant, Wk

is the molecular weight of species k, and W is the molecular weight of the

mixture. The thermodynamic pressure is spatially uniform in the low-Mach

number limit. Further, restricting our focus to flow in an open domain, P0

is assumed constant.

The convection and diffusion terms in (1) are given by

CU = − (v · ∇)v, DU =
1

ρ
∇ · τ, (3a)

CT = − (v · ∇)T, DT =
1

ρcp
∇ · (λ∇T )−

(
Ns∑
k=1

cp,kYkVk

)
· ∇T (3b)

CYk
= − (v · ∇)Yk, DYk

= −1

ρ
∇ (ρYkVk) (3c)

and the source terms by

ST = − 1

ρcp

Ns∑
k=1

hkω̇k, SYk
=
ω̇k

ρ
(4)

where τ is the stress tensor given by τij = µ
(

∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij∇ · v

)
, µ is the

dynamic viscosity, and λ is the mixture thermal conductivity. Further,

Vk = −Dk,m

Yk

(
∇Yk +

Yk

W
∇W

)
, (5)

is the diffusion velocity of species k, where Dk,m is the mixture-averaged

diffusivity of species k. Finally, cp and cp,k are the specific heats at constant

pressure for the mixture and species k, respectively, and hk and ω̇k are the

specific enthalpy and molar production rate, respectively, of species k. The
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equation of state Eq. (2) is used to derive an expression for the right hand

side of the continuity equation (1a)

DP0

Dt
= 0→ 1

ρ

Dρ

Dt
= − 1

T

DT

Dt
−

Ns∑
k=1

W

Wk

DYk
Dt

(6)

= − 1

T
(DT + ST )−

Ns∑
k=1

W

Wk

(DYk
+ SYk

) (7)

The Soret and Dufour effects are negligible for hydrocarbon combustion

and are not included in the transport model. Radiation is ignored: a reason-

able assumption for lean premixed flames because its total gas emittance

(dominated by H2O and CO2) is typically extremely small. A mixture-

averaged formulation is used to compute the transport properties of the gas

mixture.

There is thermal contact between the immersed solid body and the sur-

rounding fluid. The conjugate heat exchange between them is incorporated

by simultaneously integrating the equations governing the reacting flow with

the transient heat conduction equation inside the solid:

∂T

∂t
=

1

ρscs
∇ · (λs∇T ) (8)

where ρs is the density, λs is the thermal conductivity and cs is the heat

capacity of the solid.

2.3. Numerical methodology

On each rectangular patch in the domain, a staggered mesh is used: vari-

ables are defined at the cell-centers (scalars) and the edge-centers (vectors).
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The numerical integration of the system of equations is performed in three

stages. First, a projection approach is adopted for the momentum equations

on a fixed uniform mesh. In the second stage, we recursively implement a

symmetric Strang splitting scheme in all the SAMR levels beginning with

the chemical source term contribution for half the time step, followed by

the contributions from the convection and diffusion terms for a full time

step, and concluded by the remaining contribution from the reaction term

for half the time step. The time stepping is concluded with the third stage,

which repeats the projection algorithm for the momentum equations using

the updated scalar fields. The sequential stages of the numerical algorithm

to efficiently integrate the multiscale governing equations are described in

detail in [12]. The major differences are highlighted in the summary below.

The new buffer zone IBM to incorporate the flame-wall interactions is then

presented in detail in Section 2.4.

Stage 1a

The second-order Adams-Bashforth scheme is used to advance the velocity

field from vn to v̂n+1 using convection and diffusion terms only, without the

pressure gradient term. The rigid rectangular immersed body is stationary

and the solid marker function is used to impose the no-slip condition on the

provisional velocity field v̂n+1
s = 0; subscript s denotes a solid cell.

Stage 1b

The provisional velocity field, v̂, does not satisfy the continuity Eq. (1a).

This equation is used in conjunction with Eq. (1b) to derive an equation

for the hydrodynamic pressure field which is then used to correct v̂. A
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standard second-order finite-difference method is used to solve the variable

coefficient pressure Poisson equation. The pressure stencil is appropriately

adjusted near the computational domain boundaries and the immersed solid

boundaries (using the binary marker function). Explicit pressure boundary

conditions are not required because of the staggered grid arrangement. The

pressure value in the cell-center of one of the corner cells in the outflow

boundary of the domain is fixed to unity for uniqueness of the solution. The

hypre package is used to solved the linear system resulting from the discretiza-

tion on the uniform base grid of the mesh hierarchy. The iterative conjugate

gradient method is used with the tolerance for the residuals typically set to

10−14–10−17 (limits the propagation of convergence errors).

Stage 1c

The gradient of the hydrodynamic pressure is then used to correct the pro-

visional velocity field v̂n+1 to obtain the predicted velocity at n+ 1

vn+1,p = v̂n+1 − ∆t

ρn+1
∇p, (9)

Superscript p refers to the predicted velocity values.

Stage 2a

The scalars (temperature and species mass fractions) are advanced over half

the time step based on contributions from the source terms, ST and SYk
.

T ∗ − T n =

∫
∆t/2

STdt

Y ∗k − Y n
k =

∫
∆t/2

SYk
dt k = 1, 2, . . . , Ns (10)
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The CVODE stiff integrator package [27] is used to implicitly integrate

Eqs. (10). The source terms for species and energy equations are set to

zero for the solid body using the binary marker function.

Stage 2b

A second-order, multi-stage, Runge-Kutta-Chebyshev (RKC) explicit scheme

is used to advance scalars based on the contributions from convection and

diffusion terms. The convection terms for species and energy equations are

zero for the solid cells since the velocity field is zero. The no penetration

boundary condition for species mass-fractions and the conjugate heat ex-

change matching conditions for temperature, discussed later, are imposed at

each RKC stage.

Stage 2c

Stage 2c is a repeat of Stage 2a, using the “**” scalar values as initial con-

ditions. At the end of this stage all scalars correspond to tn+1.The species

mass-fraction of the diluent (N2 for air combustion) is computed by imposing

the consistency condition
∑

k Yk = 1.

Time integration on the mesh hierarchy

Temperature and species mass-fractions have to be integrated on the succes-

sively refined mesh in the SAMR framework. On adjacent mesh levels, L and

L + 1 in the grid (see Fig. 1), the scalars are first advanced on the coarse

level L using the RKC algorithm described above. After the advancement

is completed on L, the solution on this level is used to provide boundary

conditions (via coarse-to-fine prolongation) for the solution advancement on

L + 1. The grid size on the finer mesh level L + 1 is half compared to L.
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The time step is also halved for stability purposes. At the end of the two

sub-steps on L+ 1 the fine-grid solution is interpolated to the coarse grid L

via fine-to-coarse restriction.

Stage 3a

The provisional velocity field values at tn+1 are re-evaluated based on the

scalar values obtained at the end of Stage 2 and on the predicted velocity

values at the end of Stage 1. Similar to the Stage 1a, the no-slip boundary

condition at the immersed boundaries is imposed using the binary marker

function.

Stage 3b

The hydrodynamic pressure field is re-computed using the provisional veloc-

ity field obtained in Stage 3a.

Stage 3c

This final stage in the iteration is similar to Stage 1c. The gradient of the

hydrodynamic pressure obtained at Stage 3b is used to correct the velocity

obtained at the end of Stage 3a.

The interpolation and derivative stencils are chosen such that an overall

second-order accuracy is achieved. A fourth-order accurate derivative stencil

is used for all the terms in the governing equations where second-derivatives

need to be computed (e.g. the diffusion terms). This is because we com-

pute the second derivative by taking the derivative of the first derivative.

A second-order accurate derivative stencil is used for all the terms in the

governing equations where only a first-derivative needs to be computed (e.g.

the convection terms). We use second-order stencils for the interpolations
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required during the multigrid prolongation and restriction. The interpola-

tion and derivative stencils for various orders of accuracy are presented in

[28]. A detailed investigation of the computational expense of each of the

algorithmic components was presented in [12]. It was shown that typically

Stage 2 consumes the majority of the computational time.

Boundary conditions

The domain boundary conditions are the same as described in [12]. In

addition, we impose the no-slip boundary condition and the following scalar

matching conditions at each cell edge at the solid-fluid boundary of the im-

mersed object.

• Temperature matching T |fluid = T |solid

• Heat flux matching λ∂T
∂n
|fluid = λ∂T

∂n
|solid

• No penetration of species ∂Yi

∂n
|fluid = 0

These matching conditions are imposed using the novel buffer zone approach

described in the next section.

2.4. Buffer zone method

The buffer zone approach is introduced here: the solution is first obtained

in the combined solid-fluid domain, and then corrected inside the solid to the

desired value by imposing the boundary conditions. Similar techniques are

well developed in the literature for non-reacting flows, even for complex non-

grid conforming immersed solid bodies. However a methodology similar to
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the one described in the following section, that solves multi-species react-

ing flows in the SAMR framework incorporating solid-fluid conjugate heat

exchange, is still missing to the best of our knowledge.

Buffer zones, comprised of a very thin layer of fictitious valued-cells, are

employed near the solid-fluid boundary inside the numerical domain. These

cells are created at each sub-step of the scalar RKC integration in Stage 2

such that the boundary matching conditions are automatically imposed when

the symmetric stencils are used within the solvers for computing derivatives

and interpolations. This makes the numerical implementation simpler as

the entire domain can then be regarded as a fluid-only domain. The no-

penetration of the species is imposed by using single-sided buffer zones and

the temperature and heat flux matching conditions are imposed by using

dual buffer zones.

2.4.1. Single-sided buffer zones for species mass-fractions

Due to the presence of second derivatives in the diffusion terms, the right-

hand-side term in Eq. (1d) at each cell center then depends on a 3× 3 grid

cells around it (for a two dimensional stencil). Thus, to impose the no-

penetration of species condition at the fluid-solid boundary, a 3-cell deep

layer of buffer zone is created inside the rectangular solid body, refer to Fig.

2a for a schematic illustration. The species mass-fractions do not physically

exist inside the immersed solid object allowing us to re-use the solid cells’ data

structures originally defined assuming they were fluid cells. This construction

does not add significantly to the iteration cost because the number of cells

in the buffer zones are a very small fraction of the total number of cells in

the full numerical domain.
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Consider, for simplicity, a one-dimensional configuration, with the indices

for the cell and edge centers as shown in Fig. 2b. The zero-gradient scalar no

penetration condition, ∂f
∂x

= 0, at the face center of the solid-fluid boundary

using a 4th order accurate derivative stencil and 4thorder extrapolations for

cells (−2) and (−3) gives

1

24hx
(f−2 − 27f−1 + 27f0 − f1) = 0

f−2 − 4f−1 + 6f0 − 4f1 + f2 = 0 (11)

f−3 − 4f−2 + 6f−1 − 4f0 + f1 = 0

leading to

f−1 =
1

23
(21f0 + 3f1 − f2)

f−2 =
1

23
(−54f0 + 104f1 − 27f2) (12)

f−3 =
1

23
(−250f0 + 375f1 − 102f2)

These expressions are used to construct the buffer zone for the species mass-

fractions inside the solid. The fluid cells adjacent in the y-direction are used

as 0, 1 and 2 for the y-normal edge of the solid body. Similarly the fluid cells

adjacent in the x-direction are used as 0, 1 and 2 for x-normal edge.

Corner treatment

Special corner treatment is required for the 4 corners of the immersed

solid because of the ambiguity in the direction to choose. The buffer zone is

modified in the 3×3 cells in each corner, see Fig. 3 for a schematic illustration.
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A set of 9 consistent equations with these 9 unknowns are formulated and

the corner cells (marked as 1, 2, 3 ..., 9 in Fig. 3) are appropriately filled.

A zero-gradient condition is imposed at the solid-fluid faces adjacent to cells

2, 3, 4 and 7. Corner point (cell 1) is a numerical singularity and does not

exist in reality. Hence we approximate a zero-gradient along the diagonal of

cell 1. This results in

1

hy
(f5 − 27f2 + 27fb0 − fb1) = 0

1

hy
(f6 − 27f3 + 27fc0 − fc1) = 0

1

hx
(f5 − 27f4 + 27ff0 − ff1) = 0 (13)

1

hx
(f8 − 27f7 + 27fg0 − fg1) = 0

1√
h2
x + h2

y

(f5 − 27f1 + 27fd0 − fd1) = 0

where hx and hy are the grid spacings in the x and y directions respectively.

4thorder extrapolations along the diagonal direction are chosen for cells 5 and

9, along the x-direction for cell 8 and along the y-direction for cell 6 on the

basis of proximity. This results in

(f5 − 4f1 + 6fd0 − 4fd1 + fd2) = 0

(f9 − 4f5 + 6f1 − 4fd0 + fd1) = 0

(f8 − 4f7 + 6fg0 − 4fg1 + fg2) = 0 (14)

(f6 − 4f3 + 6fc0 − 4fc1 + fc2) = 0
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Above is a set of 9 equations and 9 unknowns (Scalar values f1, f2, ..., f9)

based on 21 knowns (fa0, fa1, fa2, fb0, fb1, fb2, ... , fg0, fg1, fg2). The explicit

solution is

f1 =
1

23
(21fd0 + 3fd1 − fd2)

f2 = fb0 −
1

27
fb1 −

2

23
fd0 +

104

621
fd1 −

1

23
fd2

f3 =
1

23
(21fa0 + 3fa1 − fa2)

f4 = ff0 −
1

27
ff1 −

2

23
fd0 +

104

621
fd1 −

1

23
fd2

f5 =
1

23
(−54fd0 + 104fd1 − 27fd2) (15)

f6 =
1

23
(−54fa0 + 104fa1 − 27fa2)

f7 =
1

23
(21fg0 + 3fg1 − fg2)

f8 =
1

23
(−54fg0 + 104fg1 − 27fg2)

f9 =
1

23
(−250fd0 + 375fd1 − 102fd2)

Eqs. (12) and (15) together form the stencils for the single-sided buffer zones

for the species mass-fraction fields. They are constructed for each species at

all the levels of the SAMR grid and at every sub-step of the multistage RKC

integration of the scalar field.

We performed a simple test to check the second-order accuracy of the

constructed stencils. These stencils incorporated a zero-gradient (no pene-

tration) condition of the species mass-fractions at the solid-fluid boundary.

To test for its accuracy, we first analytically manufactured a test-field with

circular contours around a reference point. We then constructed the 3-cell
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wide single-sided buffer zone near two perpendicular lines originating from

that reference point (normal to the circular contours). The manufactured

test-field and the reconstructed field were then compared for order of accu-

racy estimation. Figure 4 shows a uniformly discretized 256 × 256 square

domain. We chose the point corresponding to index (176+1/2,176+1/2)

as the reference origin (x0, y0) and computed the analytical distance (d =√
(x− x0)2 + (y − y0)2) of all the points in the numerical domain from it.

The left plot in Fig. 4 shows the distance contours of the manufactured test

field; which are circular around the reference point by mathematical construc-

tion. Two perpendicular line segments with the indices; (1) i = (176 + 1/2)

and (176+1/2) ≤ j ≤ 256 and (2) (176+1/2) ≤ i ≤ 256 and j = (176+1/2)

were chosen as left and bottom edges of a 80 × 80 square in the top right

corner of the domain. The contours of the test field are normal to these

lines. We reconstructed the test field in the 3-cell wide buffer zone marked

by the region 177 ≤ i, j ≤ 179 using the single-sided buffer zone stencils.

The manufactured test-field and the reconstructed field were compared for

the error using the `1 norm (`1 =
∑

ij |dij−dij,a|
Np

). We repeated this by de-

creasing the resolution: 128×128 discretization of the domain with reference

point as (88+1/2,88+1/2). The order of accuracy was computed [29] to be

log2
L1,256

L1,128
= 2.03. This manufactured solution test confirmed the second-

order accuracy of the single-sided buffer zone stencil. Detailed overall con-

vergence order tests using various reacting and non-reacting flows will be

discussed in Section 3.
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Note

3rd order extrapolations for cells (−2) and (−3) may be used instead of 4th-

order extrapolations to reduce numerical oscillations during a rapid transient

such as an artificial initial condition of ignition during the start of a combus-

tion simulation. We observed that this reduces the overall order of accuracy

to 1. We describe the stencil for such a construction below. Similar to what

was done before:

1

24hx
(f−2 − 27f−1 + 27f0 − f1) = 0

f−2 − 3f−1 + 3f0 − f1 = 0 (16)

f−3 − 3f−2 + 3f−1 − f0 = 0

leading to

f−1 = f0

f−2 = f−1 (17)

f−3 = 3f1 − 2f0
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The corresponding lower order corner point stencil is

f1 = fd0

f2 = fb0 −
1

27
fb1 +

1

27
fd1

f3 = fa0

f4 = ff0 −
1

27
ff1 +

1

27
fd1

f5 = fd1 (18)

f6 = fa1

f7 = fg0

f8 = fg1

f9 = 3fd1 − 2fd0

Although the buffer zone construction is shown for a two-dimensional

immersed object, it can be easily extended to three-dimensions. The corner

will then correspond to a 3 × 3 × 3 cube instead of a 3 × 3 square and an

equivalent 27-point stencil can be analogously derived. The 9-point stencils

derived above can be directly used for the sharp edges of the 3D immersed

object.

2.4.2. Dual buffer zones for temperature

The numerical approach for buffer zones described in the previous sec-

tion is valid for the species mass-fractions as they cease to exist inside the

solid body. The buffer zones were constructed based on the values in the

fluid. Thus, for computing derivatives and interpolations near the solid-fluid

boundary, in the fluid domain, these variables are continuous and smooth.
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This is not the case for the non-smooth temperature field. The temperature

field has a discontinuity in its derivative (a kink) at the fluid-solid boundary

in non-isothermal flows because of a large jump in the thermal conductivity:

two orders of magnitude jump at an air-ceramic boundary and even higher

for an air-metal boundary. Most conventional high-order accurate deriva-

tives and interpolations stencils failed near such a boundary and reduced the

overall accuracy because their derivation assumes a smooth field variable.

In this section, we formulate a dual buffer zone approach to address this

issue. We construct two temperature fields in the numerical domain. One

corresponds to the fluid domain solution (T f ) with a 2-cell wide buffer layer

penetrating inside the solid domain, similar in concept to the single-sided

buffer zone discussed above. The other complementary field corresponds to

the solid domain solution (T s) with a 2-cell wide buffer layer penetrating

inside the fluid domain. Figure 5a shows a schematic of the dual buffer

zone. Both temperature fields are the same at all the grid points in the

numerical domain, except in the 4-cell wide layer of cells around the solid-

fluid boundary. This construction, like the single-sided buffer zones, does

not add significantly to the cost of each iteration because the number of

cells in the buffer zones are again a small fraction of the total number of

cells in the full numerical domain. The increase in the memory requirement

is also minor because only one additional field needs to be stored in the

computational memory along with all the primary variables (temperature,

pressure, velocity-field, species mass-fractions) and other auxiliary variables

during each iteration. The two temperature fields are independently smooth

in their valid domain and their corresponding buffer zones. This allows the
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conventional derivative and interpolation stencils operating on Ts and Tf to

each be of high-order accuracy.

The dual buffer cells are constructed sequentially such that the matching

conditions at the fluid-solid boundary (T s = T f and λf
∂T f

∂n
= λs

∂T s

∂n
) dis-

cussed in Section 2.3 are imposed. The buffer cells (-1) are first constructed

by matching the 4thorder interpolations for temperature and and 4thorder

accurate derivatives for flux matching on the boundary from both the solid

and the fluid sides. This gives

1

8
(3T s

−1 + 6T s
0 − T s

1 ) =
1

8
(3T f

−1 + 6T f
0 − T

f
1 )

λs
24

(−23T s
−1 + 21T s

0 + 3T s
1 − T s

2 ) = −λf
24

(−23T f
−1 + 21T f

0 + 3T f
1 − T

f
2 ) (19)

where λs and λf are the thermal conductivities of the solid and the fluid

cells respectively. The same matching conditions are then satisfied using a

symmetric 4thorder stencil as

1

16
(−T s

−2 + 9T s
−1 + 9T s

0 − T s
1 ) =

1

16
(−T f

−2 + 9T f
−1 + 9T f

0 − T
f
1 )

λs
24

(T s
−2 − 27T s

−1 + 27T s
0 − T s

1 ) = −λf
24

(T f
−2 − 27T f

−1 + 27T f
0 − T

f
1 ) (20)

Equations (19) and (20) are sequentially solved to fill (-1) and (-2) cells.

A third set of conditions is required because the second derivative of the

temperature (computed for the thermal diffusion) needs a 3rdbuffer cell for

computation. We choose a 4th-order extrapolation condition on the heat flux

Fi = λi
∂Ti

∂n
. The heat fluxes are computed on the face centers of the staggered
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grid. The imposed extrapolation is

F f
−3/2 = 4F f

−1/2 − 6F f
1/2 + 4F f

3/2 − F
f
5/2

F s
−3/2 = 4F s

−1/2 − 6F s
1/2 + 4F s

3/2 − F s
5/2 (21)

If the thermal conductivity is constant in both the fluid and the solid do-

mains, Eqs. (21) gets simplified in terms of a temperature value at the third

buffer cell (-3) using 4thorder accurate derivative stencils as

T f
−3 = 31T f

−2 − 141T f
−1 + 275T f

0 − 275T f
1 + 141T f

2 − 31T f
3 + T f

4

T s
−3 = 31T s

−2 − 141T s
−1 + 275T s

0 − 275T s
1 + 141T s

2 − 31T s
3 + T s

4 (22)

However, the thermal conductivity varies for a reacting flow and using Eq.

(22) exhibited numerical instabilities. We use Eqs. (21) in our implementa-

tion.

Like the single-sided counterpart, the dual buffer zones are constructed at

all the levels of the SAMR grid and before the beginning of each stage in the

multistage RKC scheme (Stage 2b in the algorithm). Thereby, the conjugate

heat exchange condition is enforced at the beginning of each sub-stage. In

a multi-species transport simulation, the iteration time-step size is already

small enough to ensure that errors are small in between two stages of the

multistage RKC, when the conjugate heat exchange condition is not explicitly

enforced. The dual buffer zones are required only for the construction of the

thermal diffusion term in the energy equation. We thus compute this term

sequentially by sweeping first in the x-direction and then in the y-direction.

More specifically, the thermal diffusion due to the y-gradients in temperature
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is first ignored and the dual buffer zones are formed in the x-direction and

the diffusion term is computed. The thermal diffusion due to the x-gradients

in temperature is then ignored and the dual buffer zones are formed in the

y-direction and the diffusion term is computed. These two terms are then

added to get the total thermal diffusion in each cell for the two-dimensional

domain. This allows us to avoid the sharp corner treatment as was necessary

for the species mass-fraction fields2.

A conceptually similar Matched Interface and Boundary method was pre-

sented by Zhou et al. [30]. They outlined a generalized method to obtain high-

order accurate solution of elliptic equations with discontinuous coefficients

and singular sources on Cartesian grids. They successfully demonstrated it

using non-reacting test cases with non-grid conforming immersed boundaries.

However, a method for a more complex problem such as multi-species reacting

flows was not formulated. A second-order buffer zone IBM coupled with an

operator-split projection algorithm and SAMR framework for multi-species

reacting flows is unique in our method. Complex immersed boundaries-

SAMR coupling (irregular geometries with boundary cutting through the

grid cells) is a far more challenging task and a natural extension to our cur-

rent work.

22nd derivatives of the species mass-fractions need to be computed multiple times per
iteration making the alternate direction sweeping technique used for the dual buffer zone
cumbersome for implementation in our numerical method
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3. Results and discussions

In this section, we validate the overall construction and demonstrate

its second-order temporal and spatial convergence using various test cases.

We also demonstrate the capability of our numerical method using a two-

dimensional reacting flow simulation of a premixed methane/air flame stabi-

lized on a channel-confined bluff-body.

3.1. Impulsively started thin vertical plate in a non-reacting isothermal cross-

flow: validation and temporal convergence

The flow past a thin flat plate normal to the free stream is a classic

example of bluff-body flows. We use this test case to validate the no-slip

implementation and the pressure solver in the presence of the immersed solid

in the momentum integration stages, which is solved only on a uniform grid

as noted before. We consider a fixed vertical plate of height d in a cross-

flow where the undisturbed velocity far away from the plate is U . This

configuration has been extensively used for benchmarking in the literature;

experiments of Taneda and Honji [31] and Dennis et al. [32], finite element

simulations of Yoshida and Nomura [33], Laval and Quartapelle [34] and

Tamaddon-Jahromi et al. [35], vortex method simulation of Koumoutsakos

and Shiels [36]. As the plate is impulsively started, a recirculation zone starts

to form on the downstream face of the thin vertical plate and it starts to

grow with time. Figure 6 shows a comparison of the location of this growing

symmetric recirculation during its early development. The recirculation zone

size is defined as the distance of the downstream stagnation point from the

downstream edge of the plate. An inflow Red = 126 based on d was chosen in
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the simulation. The thickness of the plate was used as 0.15d, where d = 5mm.

320×128 grid points were used with the domain size of 20d×12.5d. Symmetry

conditions were used at the boundaries parallel to the flow direction. Figure

6 shows an excellent agreement with the transient data documented in the

literature; here the lengths and velocities are nondimensionalized by d and U

respectively. For a better visualization, a representative streamline pattern

and vorticity at an intermediate time instant is shown in the insert of Fig. 6.

The scatter in the literature data increases with the non-dimensional t∗ due

to the increasing influence of the boundaries parallel to the flow depending

on the experimental conditions and the numerical approximation.

We further used the above uniform grid isothermal case to verify that

an overall second-order temporal accuracy is achieved. Projection methods

for incompressible flows have been reported to be potentially first-order ac-

curate in time in the presence of a no-slip wall due to the ambiguity in the

boundary conditions to be used for the intermediate velocity field before the

pressure Poisson correction [37, 38]. Weinan and Liu [38] reviewed the dif-

ferent boundary conditions proposed for the intermediate velocity field to

achieve an overall second-order temporal accuracy. We did not use any such

corrections but still observed that the second-order temporal accuracy was

maintained. As discussed in the numerical method, we impose a no-slip wall

boundary condition for the intermediate velocity field. The unsteady test

case discussed above was simulated for t∗ = 1 (corresponding to time when

the recirculation zone length is almost equal to the plate height d) using three

different time-steps: coarse dt∗ = t∗

1000
, medium dt∗ = t∗

2000
and fine dt∗ = t∗

4000
.

The spatial grid resolution was the same in all the three simulations and the
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O`1 err1,c−m err1,m−f
u 1.97 7.062e-9 1.808e-9
v 2.00 1.171e-8 2.919e-9

Table 1: Temporal convergence orders for the uniform grid simulation of an impulsively
started thin vertical plate in a cross flow.

`1 norms were used to compute the errors.

`1 =

∑
i,j | (φi,j − φi,j,ref ) |

Np

(23)

where Np is the number of grid points. The grid convergence order was then

estimated as [29]

O`1 = log2

err1,c−m

err1,m−f
(24)

where err denotes the `1 error and subscripts c − m and m − f denote

the coarse and medium temporal errors when compared to the medium and

fine time-step simulations respectively. The temporal convergence orders are

shown in Table 1. The overall second-order temporal accuracy is verified.

3.2. Unsteady non-reacting isothermal flow: validation

We present another unsteady cold flow validation of the momentum trans-

port using a uniform 320× 128 grid simulation. A fully developed parabolic

inlet profile for the streamwise velocity was assumed. Figure 7 shows the

instantaneous vorticity contours of an unsteady channel-confined cold flow

around a square cylinder at Red = 100 for a blockage ratio d/H = 0.2,

where H is the y-direction width of the computational domain. The vortic-

ity was non-dimensionalized by the global maximum value. The cold flow

was observed to be unsteady at these conditions. For this flow, the value
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of the Strouhal number Sd = fd
U

reported by Suzuki et al. [39] was 0.222

(on a stretched 207 × 54 grid points two-dimensional simulation); f is the

frequency of vortex shedding. We calculated this to be Sd = 0.232. Figure 7

also shows that the strong vorticity near the upper and lower channel walls,

associated with localized moving recirculation zones, is captured similar to

observations in [40].

3.3. Steady-state conjugate heat exchange between air and a ceramic solid

object: validation and spatial convergence

We present here a simple test case to validate the dual buffer zone method.

We tested the accuracy of the conjugate heat exchange between stationary

air having a temperature dependent thermal conductivity and a ceramic solid

object of a constant thermal conductivity of λs = 1.5W/mK (approximately

50 times larger than air). Only the energy equation was integrated; the

momentum projection and chemical source terms were decoupled from the

governing equations. The number of RKC steps for Stage 2b of the numerical

algorithm was fixed to M = 8. Symmetry conditions were imposed at ymin

and ymax boundaries. Dirichlet boundary conditions for temperature were

used: 300K at xmin and 600K at xmax boundaries. The steady-state solution

on a 64 × 64 uniform grid was obtained, shown in the contour plot in Fig.

8. x and y were non-dimensionalized by the height of the heat-conducting

solid object, d (white square in Fig. 8). In the absence of any immersed

solid, the temperature would increase “almost” linearly from xmin to xmax; a

small nonlinearity resulting from the temperature dependence of the thermal

conductivity of air. This is seen near the ymin and ymax boundaries in Fig.

8(top), where the influence of the immersed solid is small. The temperature
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field is non-smooth at the edges of the solid body due to the large change

in the thermal conductivity. For a dual buffer zone implementation, that

accurately resolves the kink in T during the conjugate heat exchange, the

change in the slope of T must be equal to the thermal conductivity ratio.

Fig. 8(bottom) shows the temperature kink at the left and the right edge

of the immersed solid. We verified this jump at each edge to be equal to

the thermal conductivity ratio of the solid and the air at the corresponding

temperature; thereby validating the dual buffer zone construction.

We further verified the spatially second-order convergence of our method

using the above test-case using three simulations. The steady-state simu-

lations were obtained on fine (64 × 64 base grid + 2 levels of refinement

equivalent to a grid size of 256× 256), medium (64× 64 base grid + 1 level

of refinement equivalent to a grid size of 128 × 128) and coarse (a unilevel

64 × 64) grids. The temperature solution fields for the three grids at the

coarsest (base) grid level were compared. Again, the `1 norm (Eq. 23) was

used to compute errors. The convergence order of 2.19 was obtained showing

that the non-smooth temperature profile was resolved with a second-order

accuracy using the dual buffer zone method.

3.4. Convection-diffusion test: spatial convergence

The momentum and scalar transport equations were coupled with the

SAMR framework in the simulations discussed in the remaining sections.

Both single-sided and dual buffer zones were thus constructed simultaneously.

Figure 9 shows a 2-level flow simulation of a Gaussian field of temperature

and species mass-fraction around an immersed rectangular solid. The black

rectangles mark the refined patches in the domain. The outer rectangle is the
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level 1 patch refined by factor of 2 from the base grid and the inner rectangle

is the level 2 patch refined further by a factor of 2 from the level 1 grid.

The flow direction is from left to right. The flow was composed of a non-

reacting mixture of 2 species (CH4 and N2). The chemical source terms were

switched off during this test case, thereby considering a non-isothermal but

non-reacting multi-species simulation. An initial condition of an upstream

Gaussian scalar field of T , YCH4 and YN2 was specified (note that
∑

k Yk = 1

and thus YN2 = 1− YCH4) such as

φ(x/d, y/d) = φ0 exp(−(x/d− x0)2(y/d− y0)2

δ2
) (25)

where d = 2.4 mm is the height of the solid body in the y-direction and non-

dimensional δ = 0.4, x0 = 1.0 and y0 = 1.6. The mean inlet flow velocity

was fixed at U = 0.3 m/s which was equivalent to an inflow Red = 45 based

on d. A small time step dt = 1 × 10−5sec was chosen. This corresponds to

convective and diffusive CFL numbers of udt/dx = 0.05 and νdt/dx2 = 0.05

respectively; on the base coarse grid. The number of RKC steps for Stage 2b

of the numerical algorithm was fixed to M = 8. Symmetry conditions were

imposed at ymin and ymax boundaries. The thermal properties of the solid

body (corresponding to steel) were λs = 12W/mK, ρs = 8000kg/m3 and

cs = 503J/kgK. The simulation was performed for 10 ms on fine (256× 128

base grid + 2 levels of refinement equivalent to a grid size of 1024 × 512),

medium (256× 128 base grid + 1 level of refinement equivalent to a grid size

of 512 × 256) and coarse (a unilevel 256 × 128) grids. The flow is from left

to right. The scalar solution field for the three grids at the coarsest (base)

grid level were compared. The `1 norm (Eq. 23) was used to compute errors.
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O`1 err1,c−m err1,m−f
T 1.96 1.3667-2 3.505e-3
YCH4 1.84 2.7467-5 7.665e-6
YN2 1.84 2.747e-5 7.665e-6

Table 2: Spatial convergence orders for the convection-diffusion SAMR simulations.

The grid convergence order was estimated similar to the previous section; its

values are shown in Table 2. The errors were computed only in the refined

region in the SAMR simulations. A Gaussian field of only YCH4 and YN2 for

an isothermal flow; and a Gaussian field of only T were also independently

tested for convergence using the same flow conditions and convergence orders

of 1.85 and 1.96 were respectively obtained.

Figure 10 shows a visualization of the single-sided buffer zone for the

species mass-fraction of YCH4 corresponding to the lower right contour plot

shown in Fig. 9. The contours inside the zoomed top figure visually show

the fictitious values inside the single-sided species buffer zone and the zero-

gradient condition at the fluid-solid boundary. It must be noted that for a

refined patch, the penetration of buffer zone inside the solid is smaller since

the 3-cell zone covers less area on a finer patch when compared to a coarser

patch.

3.5. Reacting flow: spatial convergence

We now demonstrate the overall second-order convergence of our buffer

zone method using fully-coupled reacting flow simulations.
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3.5.1. Premixed flame using a single-step chemical kinetics model

Figure 11 shows the fuel (methane) contours of a premixed flame interact-

ing with a bluff-body at the downstream end. A time-step of dt = 1×10−6sec,

corresponding to convective and diffusive CFL numbers of 0.005, was chosen.

The reactants are flowing from left to right. A global single-step chemical

mechanism for methane-air combustion was chosen as

CH4 +O2 + 3.76N2 → CO2 + 2H2O + 3.76N2 (26)

The overall reaction rate expression for the single-step chemistry is given by

kf = AT n exp(
−Ea

RT
)[CH4]a[O2]b (27)

where the Arrhenius constant A = 9.0×1023 cm3/mol/sec, activation energy

Ea = 55000 cal/moles, a = b = 1 were used. These values are representative

of hydrocarbon combustion for a methane-air mixture [41].

The same thermal properties for the solid material, inflow Red = 45 and

the domain boundary conditions as used in the previous section were used

for this investigation. The laminar flame speed for a stoichiometric premixed

methane air flame is approximately 40 cm/s. The average streamwise ve-

locity of 30 cm/s was chosen at the inflow, thereby resulting in an overall

flame motion towards the incoming reactants in the Eulerian frame. A planar

premixed flame solution using Chemkin was initialized with the flame down-

stream of the solid block. The solution was evolved on a coarse grid with no

adaptive meshes (256× 128) to a time when there was a reasonable interac-

tion with the flame and the wall (Fig. 11 top). This solution was then used
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O`1 err1,c−m err1,m−f
T 2.06 2.685e+0 6.452e-1
YCH4 2.07 6.747e-5 1.603e-5
YO2 2.12 2.744e-4 6.330e-5
YCO2 2.12 2.312e-4 5.295e-5
YH2O 2.05 1.734e-4 4.196e-5
YN2 2.00 7.598e-6 1.895e-6

Table 3: Spatial convergence orders for the premixed flame SAMR simulations using a
global single-step chemical kinetics model.

as an initial condition for 3 simulations: fine (256× 128 base grid + 2 levels

of refinement equivalent to a grid size of 1024×512), medium (256×128 base

grid + 1 level of refinement equivalent to a grid size of 512× 256) and coarse

(a unilevel 256×128) grids. The simulations were performed for 1ms allowing

the flame to travel by approximately four reaction zone thickness length in

the domain. The `1 norms for the scalars were used to estimate convergence

order shown in Table 3. An overall second-order convergence was computed

for all the scalar fields demonstrating the accuracy of our single-sided and

dual buffer zone method in a fully coupled reacting flow simulation.

3.5.2. Premixed Flame using a detailed chemical kinetics model

We repeated the above discussed convergence test using a detailed chem-

ical kinetics model. A 16 species 46 reactions C1 chemical kinetics described

by Smooke et al. [42] was used for the simulations using similar flow condi-

tions and domain configuration as described in the previous section. Again

a simulation for a total of 1ms was performed for this test, corresponding

to flame motion equivalent to approximately four reaction zone thickness.

The iteration time-step was however reduced to dt = 5× 10−7sec unlike the
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dt = 1 × 10−6sec used in the single-step test. The methane contours of the

premixed flame interacting with the solid at its downstream end were visually

similar to the contours shown in Fig. 11. The convergence orders using the

`1 norms of the major and minor species and temperature field are shown in

Table 4. The overall second-order accuracy of our buffer zone method using

a fully coupled reacting flow simulation, in the presence of rapidly reacting

radicals, is also confirmed3.

The SAMR simulation with 2 levels of refinement on a 256 × 128 base

grid was observed to be 3.5× faster than the equivalent setup (same finest

mesh resolution) of a unilevel 1024× 512 grid. The data size of the simula-

tion in terms of disk-space for the former was 4× smaller compared to the

latter. This is indicative of the large performance gain that can be achieved

for reacting flow simulations using a coupled immersed boundary-SAMR ap-

proach.

3.6. Premixed flame stabilized on a rectangular bluff-body in a confined chan-

nel

In this section, we demonstrate a practical application of our numerical

method using a bluff-body stabilized premixed flame simulation. The multi-

step C1 skeletal mechanism was again used for defining the chemical kinetics

mechanism. The reacting flow simulation around the confined rectangular

cylinder is shown in Fig. 12 at Red = 1000 for a blockage ratio d/H = 0.2.

The equivalence ratio of the methane/air reactants at inflow was chosen to be

φ = 0.7. The flow separated at the leading edge of the flame-holder, similar to

3Additional convergence studies using the same detailed chemical kinetics model for
fluid-only domains are shown in [12]
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O`1 err1,c−m err1,m−f
T 2.03 1.442e+0 3.526e-1

YCH4 2.07 6.026e-5 1.433e-5
YO2 2.07 1.952e-4 4.653e-4
YCO2 2.06 9.373e-5 2.255e-5
YH2O 2.04 1.104e-4 2.691e-5
YCO 2.03 7.426e-5 1.822e-5
YH 1.97 4.009e-7 1.026e-7
YOH 1.95 4.596e-6 1.193e-6
YCH3 2.07 4.648e-6 1.105e-6
YHCO 1.93 1.163e-7 3.060e-8

Table 4: Spatial convergence orders for the premixed flame SAMR simulations using a
detailed chemical kinetics model: C1 model described by Smooke et al. [42].

the corresponding non-reacting flow behavior on bluff-bodies [40]. The tem-

perature contours show the conjugate heat exchange between the rectangular

cylinder and the flow. The fine level patches, overlaid on the contours, show

the adaptive flame tracking by the SAMR framework. The flame stabilized

in the shear layer separating from the bluff-body. No artificial anchoring

condition was imposed in this simulation, allowing the flame to naturally

anchor near the bluff-body. This is essential to mechanistically understand

the flame-stabilization physics, which is currently underway. Contours of the

primary species YCH4 and the intermediate species YOH are also shown in

Fig. 12. The streamlines are overlaid on the YOH contours. A recirculation

zone was formed by the products of combustion behind the bluff-body. This

zone plays a critical role in the flame blow-off mechanism in such configura-

tions; detailed investigations are underway. The corresponding non-reacting

isothermal flow at this Red was unsteady; associated with vortex shedding

in the von Karman regime.
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Temperature profile along a spanwise direction (x/d = 2.5) is shown in

Fig. 13. The temperature field was non-smooth at the solid-fluid boundaries

(y/d = 2 and y/d = 3) because of the large jump in thermal conductivity.

The dual buffer zone method for the temperature ensures that this kink is

well resolved and the conjugate heat exchange between the reacting flow and

the flame-holder is accurately captured, as was demonstrated to be overall

second-order accurate in Section 3.3. The bottom insert in Fig. 13 shows the

coarse and overlaid fine mesh in a part of the computational domain. The

block-structured arrangement is visible.

Additional Comments

Although currently restricted to Cartesian geometries only, our method

is a step towards developing a complex immersed boundary formulation for

multi-species reacting flows. Our code also has the capability of treating

arbitrary geometries in the domain using stair-stepped geometries, however

its accuracy is currently limited to first-order [43]. In that, we constructed

a single-cell deep buffer zone for the species using a finite-volume type net-

zero gradient approach. High-order complex geometry immersed boundary

method (solid walls not aligned with the grid) requires accurate construction

of the corresponding buffer zones and an interpolation-based implementa-

tion of the no-slip boundary condition. This is challenging and a natural

extension of the current work. The modularity of our code, developed using

the Common Component Architecture (CCA) framework [44], will allow the

numerical machinery to be directly connected to such a complex immersed

boundary formulation.
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The binary marker function approach also provides an important advan-

tage to deal with moving bodies, e.g. coal or biomass particles in combustors.

In such cases tracking the moving boundary is not only expensive, but also

complicated in terms of data structure implementation due to the search op-

erations involved. Currently, to the best of our knowledge, second-order fully

resolved numerical simulations with flow, thermal and chemical effects using

a coupled SAMR-IBM is unavailable for moving bodies and research in this

direction is also currently underway.

4. Conclusions

We introduced a spatio-temporal second-order accurate numerical method

for a low-Mach number chemically reacting flow simulation near Cartesian

grid-conforming immersed walls. We presented a novel buffer zone method

to impose the solid-fluid boundary matching conditions eliminating the need

to use one-directional stencils near the heat-conducting walls. These buffer

zones coupled with a block-structured adaptively refined mesh and an operator-

split projection algorithm provide a fast and efficient tool to investigate flame-

wall interactions by resolving all the scales of the problem. The numerical

method treats the entire domain as if it were completely fluid, allowing us

to efficiently use the modular code developed using the CCA framework for

fluid-only domains [12, 44]. The solid cells are tracked using a binary marker

function allowing prescribing multiple solid bodies in the simulation.

We described a single-sided buffer zone construction to capture the species

mass-fractions discontinuity and presented the associated stencils. The buffer

zones are formed inside the solid using the zero-gradient conditions and high
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order extrapolations. The stencils were tested for the second-order of accu-

racy using a manufactured solution test. A dual buffer zone construction

to capture the temperature gradient discontinuity was also introduced. A

sequential construction of the buffer cells in the solid and fluid is done by

imposing the boundary matching conditions maintaining an overall second-

order accuracy. The buffer zones are constructed at all the levels of the

SAMR grid and before each stage of the multistage RKC integration of the

scalar transport. The overall second-order convergence of our buffer zone

method was demonstrated using various non-reacting and reacting SAMR

simulations. Validation of the code using benchmark cases from the litera-

ture was also shown. To demonstrate a practical application of our numerical

method, a fully coupled reacting flow simulation with a methane-air premixed

flame stabilized on a confined bluff-body, using a detailed chemical kinetics

mechanism, was presented.

The accurate treatment of the flame-wall interactions through the conju-

gate heat exchange between the reacting flow and the nearby wall allows the

flame to naturally anchor; thereby not requiring any artificial anchoring con-

ditions often used in existing numerical investigations. Flame stabilization,

extinction and blow-off mechanisms are classical multiphysics problems that

we are currently investigating using this method. Other potential applica-

tions are to develop near wall sub-scale models for LES and RANS approaches

for turbulent combustion.
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Figure 1: Schematic cell topology of a SAMR grid at two consecutive levels; filled circles
are cell centers of a coarse grid level L = 0 and open circles are cell centers of a fine grid
level L = 1. Velocity components are computed at the coarse grid face centers marked by
large arrows and interpolated to the fine grid face centers marked by small arrows.
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Figure 2: (a) Schematic of a Cartesian solid body inside a fluid domain; the shaded region
is a 3-cell wide single-sided buffer zone (b) Cell-center indices for a one-dimensional grid
marking the single-sided buffer zone.
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Figure 3: (left) Schematic of a Cartesian corner region inside the domain (right) Indices for
the special corner treatment for the buffer zones; shaded region is the zoomed-in meshed
corner inside the solid body.

Figure 4: Contours of distance from the lower bottom corner of the white square is
plotted using d =

√
(x− x0)2 + (y − y0)2 (left) everywhere in the domain without any

special treatment to any cells (right) everywhere in the domain except the 3-cell wide
single-sided buffer zone inside the white square using Eqs. (12) and (15). Grid indices are
labeled on the horizontal and vertical axes.
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Figure 5: (a) Schematic of a Cartesian solid body inside a fluid domain; the shaded regions
are 2-cell wide dual buffer zones for the solid and fluid domains (b) Cell-center indices for
a one-dimensional grid marking the dual buffer zones.
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Figure 6: Experimental and numerical comparison of the recirculation zone growth for a
case with an impulsively started thin vertical plate in a cross flow. References in the legend:
[31, 33, 34, 35, 36]. Literature data is reproduced using Fig. 19 in [36]. A representative
streamline pattern and colored non-dimensional vorticity contours at an intermediate time
instant t∗ = 3.5 is shown in the insert.
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Figure 7: Instantaneous non-dimensional vorticity contours of an unsteady channel-
confined cold flow around a square cylinder at Red = 100 for a blockage ratio d/H = 0.2.
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Figure 8: (top) Temperature contours at steady-state, white square marks the immersed
ceramic solid object in stationary air (bottom) Temperature profile at y/d = 1.6.
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Figure 9: Contours of (top) T and (bottom) YCH4
at t = 0 (left column: initial condition

for the SAMR convection-diffusion convergence test) and t = 10ms (right column). Rect-
angular solid is shown by white rectangle; level 1 and level 2 fine grid patches are marked
by the black rectangles in the right column. Streamlines are overlaid on the T contours
at t = 10ms.
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Figure 10: (top) Zoomed-in single-sided buffer zone for YCH4
(bottom) Fine grid patches

overlaid on the YCH4
contours with the buffer-zone hidden.
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Figure 11: Fuel (YCH4
) contours for a premixed flame corresponding to a stoichiometric

mixture interacting with a bluff-body (white rectangle) (top) initial condition correspond-
ing to t = 0 (bottom) after t = 1ms. A level 1 fine grid patch is marked by the black
rectangle.
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Figure 12: (top) Temperature contours with overlaid fine grid patches (middle) fuel YCH4

contours with overlaid fine grid patches (bottom) intermediate species YOH contours with
overlaid streamlines of a reacting flow at equivalence ratio φ = 0.7 around a confined
rectangular cylinder at a flow Red = 1000 for a blockage ratio d/H = 0.2.
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Figure 13: Temperature profile along x/d = 2.5 for a reacting flow at equivalence ratio
φ = 0.7 around a confined rectangular cylinder at a flow Red = 1000 for a blockage ratio
d/H = 0.2. Temperature contour with x/d = 2.5 location marked is shown in the top
insert. Coarse and overlaid fine mesh is shown in a part of the computational domain in
the bottom insert.
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